Abstract

AbstractWe present a Monte Carlo simulation algorithm for evaluating the stationary probability and the mean and the variance of first passage times in any dynamical system under the influence of additive coloured Gaussian and Marcovian noise (Ornstein‐Uhlenbeck process). Our algorithm generates the Ornstein‐Uhlenbeck process by a superposition of a finite number of random telegraph processes. We obtain our results from a direct evaluation of the trajectories. We apply our method to the overdamped motion of a particle in a double well potential. We compare our simulation results with various analytic approximations for the stationary probability and the mean first passage times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.