Abstract

In this paper, we study the optical properties of phosphor-screened ultraviolet light emitted by a quantum well through a chamber. The chamber contains randomly distributed red, blue and green phosphors, and is top-covered with a layer of omnidirectional photonic bandgap material. A Monte Carlo ray tracing method is developed to model the absorption, reflection and transmission for the excited radiation of the ultraviolet light as well as the visible light by the individual phosphor particles. The efficiency of emitting white light by synthesizing the visible light through the top substrate is investigated with respect to the weight ratio, the size of phosphor particles, the dimension of the chamber and the reflectivity of the side wall and the bottom substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.