Abstract

The paper describes a TurbidMC code that implements a perturbative Monte Carlo method to model temporal point spread functions and sensitivity functions for time-resolved fluorescence molecular tomography (FMT). The code is aimed at working with a particular FMT method published earlier (Ref. [22]) which defines the specificity of sensitivity function calculation. The method solves the inverse problem first for a generalized fluorescence parameter distribution function and then calculates separate distributions for the fluorophore absorption coefficient and the fluorescence lifetime. The proper operation of the code was verified through a comparison between fluorescence temporal point spread functions from test calculations and data from experiments where a phantom with a fluorophore was scanned with a three-channel probe in the mesoscopic reflectance regime. An example is given on the reconstruction of fluorescence parameter distributions. It shows that the sensitivity functions are calculated correctly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.