Abstract

A Monte Carlo calculation technique based on both the partial wave expansion method for elastic scattering and Krefting and Reimer’s treatment for inelastic scattering was applied for quantitative study by Auger electron spectroscopy. The theory has described the experiment of energy and angular distributions of backscattered electrons with considerable success. Dependence of the Auger signal generation on primary electron energy was investigated with a scanning Auger electron microscope, and the result was compared with the theory for a number of elements of practical interest. Through this, we have found that the present Monte Carlo approach allows us to evaluate contributions of backscattered electrons to Auger signal generation leading to more comprehensive quantitative AES study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.