Abstract

HeLa cells synthesize and secrete increased levels of tissue plasminogen activator (tPA) when incubated for 18 h with 10-20 nM phorbol myristate acetate. This response was inhibited by a number of conditions which affect intracellular Na+ and K+ concentrations. Removing extracellular Na+, while maintaining isotonicity with choline+, reduced the secretion of both functional and antigenic tPA in a linear fashion. A series of cardiac glycosides and related compounds strongly inhibited tPA secretion with the following rank order of potency: digitoxin = ouabain greater than digoxin greater than digitoxigenin greater than digoxigenin greater than digitoxose greater than digitonin. These compounds also inhibited cellular Na+/K+-ATPase activity over an identical concentration range. Two compounds which selectively increase cellular permeability to K+, valinomycin, and nigericin, strongly inhibited tPA secretion, with IC50 values of approximately 50 nM. In contrast, monensin, which selectively increases cellular permeability to Na+, was much less active. Valinomycin, but not nigericin, also inhibited cellular Na+/K+-ATPase activity. Phorbol myristate acetate, 5-20 nM, increased Na+/K+-ATPase activity up to 2-fold and tPA secretion up to 15-fold. We conclude that the secretion of tPA by HeLa cells treated with phorbol myristate acetate proceeds via a mechanism which requires extracellular Na+ and a functional Na+/K+-ATPase ("sodium pump") enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.