Abstract

We study the problem of monotonicity testing over the hypercube. As previously observed in several works, a positive answer to a natural question about routing properties of the hypercube network would imply the existence of efficient monotonicity testers. In particular, if any set of source-sink pairs on the directed hypercube (with all sources and all sinks distinct) can be connected with edge-disjoint paths, then monotonicity of functions $$f:\{ 0,1\} ^n \to \mathcal{R}$$ can be tested with O(n/∈) queries, for any totally ordered range $$\mathcal{R}$$. More generally, if at least a µ(n) fraction of the pairs can always be connected with edge-disjoint paths then the query complexity is O(n/(∈µ(n))). We construct a family of instances of Ω(2n ) pairs in n-dimensional hypercubes such that no more than roughly a $$\frac{1} {{\sqrt n }}$$ fraction of the pairs can be simultaneously connected with edge-disjoint paths. This answers an open question of Lehman and Ron [16], and suggests that the aforementioned appealing combinatorial approach for deriving query-complexity upper bounds from routing properties cannot yield, by itself, query-complexity bounds better than ≈ n 3/2. Additionally, our construction can also be used to obtain a strong counterexample to Szymanski’s conjecture about routing on the hypercube. In particular, we show that for any δ > 0, the n-dimensional hypercube is not $$n^{\tfrac{1} {2} - \delta }$$ -realizable with shortest paths, while previously it was only known that hypercubes are not 1-realizable with shortest paths. We also prove a lower bound of Ω(n/∈) queries for one-sided non-adaptive testing of monotonicity over the n-dimensional hypercube, as well as additional bounds for specific classes of functions and testers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.