Abstract
In this paper, we compare queueing systems that differ only in their arrival processes, which are special forms of doubly stochastic Poisson (DSP) processes. We define a special form of stochastic dominance for DSP processes which is based on the well-known variability or convex ordering for random variables. For two DSP processes that satisfy our comparability condition in such a way that the first process is more ‘regular' than the second process, we show the following three results: (i) If the two systems are DSP/GI/1 queues, then for all f increasing convex, with V(i), i = 1 and 2, representing the workload (virtual waiting time) in system. (ii) If the two systems are DSP/M(k)/1→ /M(k)/l ∞ ·· ·∞ /M(k)/1 tandem systems, with M(k) representing an exponential service time distribution with a rate that is increasing concave in the number of customers, k, present at the station, then for all f increasing convex, with Q(i), i = 1 and 2, being the total number of customers in the two systems. (iii) If the two systems are DSP/M(k)/1/N systems, with N being the size of the buffer, then where denotes the blocking (loss) probability of the two systems. A model considered before by Ross (1978) satisfies our comparability condition; a conjecture stated by him is shown to be true.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.