Abstract
In this paper we prove monotonicity and symmetry properties of positive solutions of the equation $ - div (|Du|^{p-2}Du)=f(u)$, $1 <p <2$, in a smooth bounded domain ${\Omega} $ satisfying the boundary condition $u=0$ on ${\partial} {\Omega} $. We assume $f$ locally Lipschitz continuous only in $(0, \infty) $ and either $f \geq 0 $ in $[0, \infty] $ or $f$ satisfying a growth condition near zero. In particular we can treat the case of $f(s) = s^{{\alpha}} -c\, s^q $, ${\alpha} >0 $, $ c \geq 0 $, $ q \geq p-1 $. As a consequence we get an extension to the $p$--Laplacian case of a symmetry theorem of Serrin for an overdetermined problem in bounded domains. Finally we apply the results obtained to the problem of finding the best constants for the classical isoperimetric inequality and for some Sobolev embeddings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.