Abstract

Aliphatic polyesters and polythioesters are very interesting alternatives for current fossil-based and degradation-resistant plastics, due to their high (bio)degradability and (chemical) recyclability potential. Two important examples include polylactide (PLD), currently leading the synthetic bioplastics market, and its sulfur analog polythiolactide (PTLD). Both polymers can be made by ring-opening polymerization (ROP) of their corresponding (thio)dilactones, lactide (LD) and thiolactide (TLD) respectively. In this work, the benefits of esters and thioesters were combined in one material by the successful catalytic synthesis and ROP of monothiolactide (MTL), an unprecedented monomer containing half a LD and half a TLD structural unit. MTL can be obtained by a simple direct condensation of biobased lactic acid and thiolactic acid aided by Brønsted acid catalysis. The novel, but simple monomer showed to be easily polymerized with triethylamine to materials containing alternating lactic and thiolactic ester units with a very high molar mass. The lower stability of MTL (vs. TLD) resulted in improved ROP thermodynamics, while also fast and controllable polymerization kinetics were observed. The new polymers feature a good chemical recycling and hydrolytic degradation potential with important improvements compared to PTLD and PLD. Finally, a successful co-polymerization with commercial LD was shown, paving the way towards industrialization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.