Abstract
Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to enhancement of the local electric field by light-excited surface plasmons, the collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3- dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks (NPGDs) not only possess large specific surface area but also high-density, internal plasmonic “hot-spots” with impressive electric field enhancement, which greatly promotes plasmon-matter interaction as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of NPGD can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. The coupling between external and internal nanoarchitecture provides a potential design dimension for plasmonic engineering. The synergy of large specific surface area, high-density hot spots, and tunable plasmonics would profoundly impact applications where plasmonic nanoparticles and non-plasmonic mesoporous nanoparticles are currently employed, e.g., in in-vitro and in-vivo biosensing, molecular imaging, photothermal contrast agents, and molecular cargos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.