Abstract

A monolithic 6 × 6 transmitter-router with both port and wavelength switching at sub-nanosecond speed is proposed and experimentally demonstrated. Based on an intra-cavity cyclic echelle diffraction grating router (EDGR) and semiconductor optical amplifier (SOA) arrays, each selectable output port can realize a selected multi-wavelength laser (MWL) output. The measurement results show that all 36 input-output combinations have a single-mode emission spectrum with a sidemode suppression ratio (SMSR) over 30 dB. Simultaneous switching of six laser wavelengths is achieved together with the switching of the output port by a single electrode selection. The switching time is less than 1 ns. It can offer a cost-effective solution to multi-wavelength multi-port optical transmitter-routers for fast distributed optical switching in datacenters and high-performance computers (HPCs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.