Abstract

To develop a cell culture model of human alveolar epithelial cells in primary culture for the in vitro study of pulmonary absorption and transport. Type II pneumocytes isolated from normal human distal lung tissue by enzyme treatment and subsequent purification were plated on fibronectin/collagen coated polyester filter inserts, and cultured using a low-serum growth medium. Characterization of the cell culture was achieved by bioelectric measurements, cell-specific lectin binding, immunohistochemical detection of cell junctions, and by assessment of transepithelial transport of dextrans of varying molecular weights. In culture, the isolated cells spread into confluent monolayers, exhibiting peak transepithelial resistance of 2,180 +/- 62 ohms x cm2 and potential difference of 13.5 +/- 1.0 mV (n = 30-48), and developing tight junctions as well as desmosomes. As assessed by lectin-binding, the cell monolayers consisted of mainly type I cells with some interspersed type II cells, thus well mimicking the situation in vivo. The permeability of hydrophilic macromolecular FITC-dextrans across the cell monolayer was found to be inversely related to their molecular size, with Papp values ranging from 1.7 to 0.2 x 10(-8) cm/sec. A primary cell culture model of human alveolar epithelial cells has been established, which appears to be a valuable in vitro model for pulmonary drug delivery and transport studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.