Abstract

Sub-5 nm ultrashallow junctions in planar and non-planar semiconductors are formed by use of a molecular monolayer doping method and conventional spike annealing. ~70% of the dopants are found to be electrically active, allowing for a low sheet resistance for a given dopant areal dose, and minimal junction leakage currents (<1 muA/cm<sup>2</sup>) are observed. This indicates the high-quality of the ultrashallow junctions formed by this monolayer doping method. In addition, temperature-dependent current-voltage (I-V) behavior of individual InAs nanowire field-effect transistors is used to study the field-effect mobility as a function of nanowire radius. The field-effect mobility is observed to decrease with decreasing radius. The low-temperature transport behavior reveals the significant impact of surface roughness scattering on mobility degradation in smaller radius nanowires. The successful demonstration of a monolayer doping technique that does not introduce defects into the substrate, combined with a better understanding of diameter-dependent electron mobility in nanowires, contributes toward the advancement of nanoscale, electronic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.