Abstract

The organic-inorganic interfaces can enhance Li+ transport in composite solid-state electrolytes (CSEs) due to the strong interface interactions. However, Li+ non-conductive areas in CSEs with inert fillers will hinder the construction of efficient Li+ transport channels. Herein, CSEs with fully active Li+ conductive networks are proposed to improve Li+ transport by composing sub-1nm inorganic cluster chains and organic polymer chains. The inorganic cluster chains are monodispersed in polymer matrix by a brief mixed-solvent strategy, their sub-1nm diameter and ultrafine dispersion state eliminate Li+ non-conductive areas in the interior of inert fillers and filler-agglomeration, respectively, providing rich surface areas for interface interactions. Therefore, the 3D networks connected by the monodispersed cluster chains finally construct homogeneous, large-scale, continuous Li+ fast transport channels. Furthermore, a conjecture about 1D oriented distribution of organic polymer chains along the inorganic cluster chains is proposed to optimize Li+ pathways. Consequently, the as-obtained CSEs possess high ionic conductivity at room temperature (0.52mScm-1 ), high Li+ transference number (0.62), and more mobile Li+ (50.7%). The assembled LiFePO4 /Li cell delivers excellent stability of 1000 cycles at 0.5C and 700 cycles at 1C. This research provides a new strategy for enhancing Li+ transport by efficient interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.