Abstract
One of the primary strategies for malaria vaccine development has been to design subunit vaccines that induce protective levels of antibodies against the circumsporozoite (CS) protein of malaria sporozoites. In the Plasmodium yoelii mouse model system such vaccines have been uniformly unsuccessful in protecting against sporozoite-induced malaria. To demonstrate that antibodies to P. yoelii CS protein could provide protection we established a passive transfer model. Passive transfer of Navy yoelii sporozoite 1 (NYS1), an IgG3 mAb against the P. yoelii CS protein, protected 100% of mice against challenge with 5000 P. yoelii sporozoites. Binding of NYS1 to sporozoites was inhibited by incubation with (QGPGAP)2, a synthetic peptide derived from the repeat region of the P. yoelii CS protein, indicating that the epitope on sporozoites recognized by this mAb was included within this peptide. The levels of antibodies to (QGPGAP)2 by ELISA, and to sporozoites by indirect fluorescent antibody test and CS precipitation reaction were similar in sera from mice that received NYS1 in passive transfer and were protected against challenge with 5000 sporozoites, and from mice that had been immunized with subunit vaccines containing (QGPGAP)2 but were not protected against challenge with 40-200 sporozoites. To determine if antibody avidity, not absolute concentration could explain the striking differences in protection, we established a thiocyanate elution assay. The results suggest that NYS1, the protective mAb, has a lower avidity for (QGPGAP)2 and for sporozoites than do the vaccine-induced antibodies. Although the results of the conventional antibody assays did not correlate with protection, sera from the protected animals inhibited sporozoite development in mouse hepatocyte cultures significantly more than did the sera from the unprotected, subunit vaccine-immunized animals, correlating with protection. The data clearly demonstrate that antibodies to the CS protein can protect against intense sporozoite infection. Improved understanding of the differences between protective mAb and nonprotective polyclonal antibodies will be important in the further development of malaria vaccines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.