Abstract

We examined the effects of monochloramine (NH2Cl) on the gastric mucosal blood flow (GMBF) response and the healing of ethanol-induced gastric lesions in rats. Rats fasted for 18 h were given the 99% ethanol p.o. for induction of gastric lesions, and were fed normally from 1 h later onwards. Monochloramine, at non-ulcerogenic doses (5 to approximately 20 mmol/L), was given p.o. twice daily for 7 days, starting 2 h after ethanol treatment. Gastric lesions caused by ethanol healed almost completely within 7 days with re-epithelialization. The repeated administration of NH2Cl significantly delayed the healing of ethanol-induced gastric lesions in a dose-dependent manner. The damaged mucosa showed a marked rise in H+ permeability, resulting in luminal acid loss, but this process was accompanied by an increase of mucosal blood flow. Monochloramine did not affect the increased mucosal H+ permeability observed in the stomach after damage by ethanol, but significantly inhibited the mucosal hyperemic response associated with luminal acid loss. Prior exposure of the mucosa to NH2Cl (20 mmol/L) did not affect the gastric hyperemic response caused by mucosal application of misoprostol (a prostaglandin E1 derivative) or NOR-3 (a nitric oxide donor), but totally attenuated the increase of GMBF in response to intragastric capsaicin. Impaired healing and GMBF responses were also observed in rats following chemical ablation of capsaicin-sensitive sensory neurons. These results suggest that NH2Cl impaired the healing of acute gastric mucosal lesions at low concentrations, and this action may be attributable, at least partly, to the impairment of gastric hyperemic response caused by the dysfunction of capsaicin-sensitive sensory neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.