Abstract

The forebrain is characterized by a dense, localized dopamine (DA) innervation pattern, a diffuse, widespread norepinephrine (NE) innervation pattern, and a serotonin (5-HT) innervation intermediate between the DA and NE patterns. These innervation patterns have implied that basic differences exist in the way DA, NE and 5-HT axons collateralize to different brain structures; that is, DA axons are thought to be poorly collateralized and NE and 5-HT axons are presumed to be more highly collateralized. In the present study, we used injections of retrograde labeling fluorescent dyes into various forebrain regions in order to determine axonal branching patterns from nuclei that contain DA, NE and 5-HT neurons, namely the substantia nigra-ventral tegmental area (SN-VTA), locus coeruleus (LC) and raphe nuclei (DR-MR). The results suggest that at least two subpopulations of neurons can be defined in each monoamine nucleus with respect to the way their axons collateralize. Each area contains a centrally located nuclear area with highly collateralized neurons, and more peripherally situated areas with less highly collateralized neurons. Thus, previous suppositions of the branching of monoamine axons must be revised to account for the existence of cells exhibiting totally different Collateralization patterns within each monoamine nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.