Abstract

Tetra-aryl-substituted symmetrical conjugated bis-guanidine (CBG) ligands such as L1-3 (3H) [L(3H) = {(ArHN)(ArHN)C═N-C═NAr(NHAr)}; Ar = 2,6-Me2-C6H3 (L1(3H)), 2,6-Et2-C6H3 (L2(3H)), and 2,6-iPr2-C6H3 (L3(3H))] have been employed to synthesize a series of four- and six-membered aluminum heterocycles (1-8) for the first time. Generally, aluminum complexes bearing N,N'- chelated guanidinate and β-diketiminate/dipyrromethene ligand systems form four- and six-membered heterocycles, respectively. However, the conjugated bis-guanidine ligand has the capability of forming both four- and six-membered heterocycles possessing multimetal centers within the same molecule; this is due to the presence of three acidic protons, which can be easily deprotonated (at least two protons) upon treatment with metal reagents. Both mono- and dinuclear aluminum alkyls and mononuclear aluminum alkoxide, halide, and hydride complexes have been structurally characterized. Further, we have demonstrated the potential of mononuclear, six-membered CBG aluminum dialkyls in catalytic hydroboration of a broad range of aldehydes and ketones with pinacolborane (HBpin).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.