Abstract

A high-resolution in situ spectroelectrochemical optical diffraction experiment has been developed to understand the volume expansion/contraction process of amorphous silicon (a-Si) thin-film anodes. Electrodes consisting of 1D transmissive gratings of silicon have been produced through photolithographic methods. After glovebox assembly in a home-built Teflon cell, monitoring of the diffraction efficiency of these gratings during the lithiation/delithiation process is performed using an optical microscope equipped with a Bertrand lens. When the diffraction efficiency along with optical constants obtained from in situ spectroscopic ellipsometry is utilized, volume changes of the active materials can be deduced. Unlike transmission electron microscopy and atomic force microscopy characterization methods of observing silicon's volume expansion, this experiment allows for real-time monitoring of the volume change at charge/discharge cycles greater than just the first few along with an experimental environment that directly mimics that of a real battery. This technique shows promising results that provide needed insight into understanding the lithium alloying reaction and subsequent induced capacity fade during the cycling of alloying anodes in lithium-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.