Abstract

Objective: The aim of this study was to investigate the feasibility of optical spectroscopy as a nondestructive approach in monitoring the skin melanoma cancer cell response to treatment. Background: Owing to the growing trend of personalized medicine, monitoring the treatment response individually is particularly crucial for optimizing cancer therapy efficiency. In the past decade, optical sensing, using diffuse reflectance spectroscopy, has been used to improve the identification of cancerous lesions in various organs. Until now, surveys have mainly focused on the nondestructive application of optical sensing used to diagnose and discriminate normal and abnormal biomedical lesions or samples. Meanwhile, the response to the treatment might be monitored using these nondestructive technologies, thereby enabling further therapeutic modification. Methods: The human skin melanoma cell line (A375) donated from Switzerland (University Hospital Basel) was cultured. Vemurafenib (Zelboraf; Genentech/Roche, South San Francisco, CA) was used for cell treatments. The visible-near-infrared reflectance spectroscopy was conducted at different time intervals (before treatment, and at 1, 2, 7, and 14 days post-treatment for three drug doses 5, 25, and 75 μM) on cell plates using the portable CCD-based fiber optical spectrometer (USB2000; Ocean Optics). After data collection, the refractive index analysis for the fore-mentioned doses and days in one selected wavelength of 620 nm was examined using the previously developed computer program. Then, biological assays were selected as gold standard of cell death, apoptosis, and drug resistance gene expression. Results: There was a considerable decrease in the refractive index of cell samples in which biological assay confirmed cell death. Based on the flow cytometry data, a drug dose of 25 μM on day 7 seemed to induce necrosis. These findings show that spectroscopic findings strongly agree with concurrent biological studies and might lead to their use as an alternative method for monitoring treatment response to achieve more optimized cancer treatment. Conclusions: The findings show that reflectance spectroscopy, as a nondestructive real-time label-free way, is capable of providing quantitative information for treatment response determination that corresponds with biological assays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.