Abstract

Climate variability significantly impacts plant growth, making it crucial to monitor ecosystem performance for optimal carbon sequestration, especially in the context of rising atmospheric CO2 levels. Net Primary Productivity (NPP), which measures the net carbon flux between the atmosphere and plants, serves as a key indicator. This study uses the CASA (Carnegie–Ames–Stanford Approach) model, a radiation use efficiency method, to assess the spatio-temporal dynamics of NPP in Togo from 1987 to 2022 and its climatic drivers. The average annual NPP over 36 years is 4565.31 Kg C ha−1, with notable extremes in 2017 (6312.26 Kg C ha−1) and 1996 (3394.29 Kg C ha−1). Productivity in natural formations increased between 2000 and 2022. While climate change and land use negatively affect Total Production (PT) from 2000 to 2022, they individually enhance NPP variation (58.28% and 188.63%, respectively). NPP shows a strong positive correlation with light use efficiency (r2 = 0.75) and a moderate one with actual evapotranspiration (r2 = 0.43). Precipitation and potential evapotranspiration have weaker correlations (r2 = 0.20; 0.10), and temperature shows almost none (r2 = 0.05). These findings contribute to understanding ecosystem performance, supporting Togo’s climate commitments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.