Abstract

An essential feature of viral quasispecies, predicted from quasispecies theory, is that the target of selection is the mutant distribution as a whole. To test molecularly the mutant composition selected from a viral quasispecies we reconstructed a mutant distribution using 19 antigenic variants of foot-and-mouth disease virus (FMDV). Each variant was marked by a specific amino acid replacement at a major antigenic site of the virus that conferred resistance to a monoclonal antibody (mAb). The variants were introduced in the mutant spectrum of a biological FMDV clone, at a frequency commonly found in FMDV quasispecies. The reconstructed quasispecies (and a number of control populations) were allowed to replicate in the presence or absence of the mAb. The mutant distribution that became dominant as a result of antibody selection included at least ten of the 19 mutants initially used to reconstruct the quasispecies. No such biased mutant repertoire was found in control populations. The results show that a mutant distribution was selected, and are incompatible with selection of an individual genome, which then generated multiple mutants upon further replication. An ample representation of variants immediately following a selection event should contribute to subsequent adaptability of the virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.