Abstract

Ion mobility spectrometry (IMS) measurement combined with unsupervised neurocomputing is considered as a new potential method for on-line monitoring of fermentation and other processes producing volatile compounds that involve micro-organisms. This was demonstrated in a model system in which a strain of brewer’s yeast ( Saccharomyces cerevisiae) was cultivated in a bench-top fermenter. Five phases of yeast growth could be detected from measurements of the exhaust gases from the fermenter, as indicated by the changes in ion mobility spectra analysed by computational methods. The data were first processed using the Self-Organizing Map (SOM) algorithm, the results showing that the phases of fermentation can be detected and identified. The cultivations were also shown by Sammon’s mapping to be comparable to a certain level of accuracy. Contaminated cultivation could be detected by its distinctive ion mobility spectrometry profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.