Abstract

Simple SummaryFall armyworm, Spodoptera frugiperda, is an invasive moth species and one of the most destructive pests of maize. It is native to the Americas but recently invaded (sub)tropical regions in Africa, Asia and Oceania. Fall armyworm larvae feeding on maize plants cause substantial economic damage and are usually controlled by the application of insecticides and genetically modified (GM) maize expressing Bacillus thuringiensis (Bt) proteins, selectively targeting fall armyworm. It has developed resistance to many different classes of insecticides and Bt proteins as well; therefore, it is important to check field populations for the presence of mutations in target proteins conferring resistance. Here, we developed molecular diagnostic tools allowing us to test the frequency of resistance alleles in field-collected populations, either alive or preserved in alcohol. We tested 34 different populations collected on four different continents for the presence of mutations conferring resistance to common classes of insecticides and Bt proteins. We detected resistance mutations which are quite widespread, whereas others are restricted to certain geographies or even completely absent. The established molecular methods show robust results in samples collected across a broad geographical range and can be used to support decisions for sustainable fall armyworm control and applied resistance management.Fall armyworm (FAW), Spodoptera frugiperda, a major pest of corn and native to the Americas, recently invaded (sub)tropical regions worldwide. The intensive use of insecticides and the high adoption of crops expressing Bacillus thuringiensis (Bt) proteins has led to many cases of resistance. Target-site mutations are among the main mechanisms of resistance and monitoring their frequency is of great value for insecticide resistance management. Pyrosequencing and PCR-based allelic discrimination assays were developed and used to genotype target-site resistance alleles in 34 FAW populations from different continents. The diagnostic methods revealed a high frequency of mutations in acetylcholinesterase, conferring resistance to organophosphates and carbamates. In voltage-gated sodium channels targeted by pyrethroids, only one population from Indonesia showed a mutation. No mutations were detected in the ryanodine receptor, suggesting susceptibility to diamides. Indels in the ATP-binding cassette transporter C2 associated with Bt-resistance were observed in samples collected in Puerto Rico and Brazil. Additionally, we analyzed all samples for the presence of markers associated with two sympatric FAW host plant strains. The molecular methods established show robust results in FAW samples collected across a broad geographical range and can be used to support decisions for sustainable FAW control and applied resistance management.

Highlights

  • IntroductionThe fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important agricultural pest of several crops in the western hemisphere [1,2]

  • The mitochondrial COI and nuclear triosephosphate isomerase (Tpi) molecular markers were employed for the identification of sympatric fall armyworm (FAW) rice and corn strain according to Nagoshi et al [17,31,32]

  • The amplification of the respective COI fragment resulted in a PCR product of around 569 bp for both strains, but the fragment amplified from corn strain contained a MspI restriction site; after digestion, the PCR product was cut into two fragments (Figure 2A and Figure S1A)

Read more

Summary

Introduction

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is an important agricultural pest of several crops in the western hemisphere [1,2]. Many resistance cases are reported for pyrethroid insecticides targeting the VGSC and inhibitors of AChE (i.e., carbamates and organophosphates). This is due to low application costs, a high number of compounds registered for decades and frequent applications [23]. Used in different agronomic settings [23] It is unclear whether FAW populations present in Africa were already resistant to old chemical compounds [24]. Farmers have complained about the efficacy of pyrethroids and organophosphate insecticides under field conditions [25] This has led to misuse by increasing rates, application frequency or even the use of unregistered compounds [25,26]. Be implemented to support decisions for appropriate resistance management strategies

Insect
DNA Extraction
PCR and qPCR Conditions
Characterization of COI Haplotypes Using PCR-RFLP
Characterization of Tpi Haplotypes Using DNA Sequencing
Target-Site Resistance Diagnostics by Pyrosequencing
F290V Mutation in AChE
GC Insertion in ABCC2
I4790M Mutation in the RyR
Results
Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.