Abstract

Although many techniques exist to transfer data from the widely distributed sensors that make up the Internet of Things (IoT) (e.g., using 3G/4G networks or cables), these methods are associated with prohibitively high costs, making them impractical for real-life applications. Recently, several emerging wireless technologies have been proposed to provide long-range communication for IoT sensors. Among these, LoRa has been examined for long-range performance. Although LoRa shows good performance for long-range transmission in the countryside, its radio signals can be attenuated over distance, and buildings, trees, and other radio signal sources may interfere with the signals. Our observations show that in urban areas, LoRa requires dense deployment of LoRa gateways (GWs) to ensure that indoor LoRa devices can successfully transfer data back to remote GWs. Wireless mesh networking is a solution for increasing communication range and packet delivery ratio (PDR) without the need to install additional GWs. This paper presents a LoRa mesh networking system for large-area monitoring of IoT applications. We deployed 19 LoRa mesh networking devices over an $800\,\,\text {m} \times 600$ m area on our university campus and installed a GW that collected data at 1-min intervals. The proposed LoRa mesh networking system achieved an average 88.49% PDR, whereas the star-network topology used by LoRa achieved only 58.7% under the same settings. To the best of our knowledge, this is the first academic study discussing LoRa mesh networking in detail and evaluating its performance via real experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.