Abstract

PurposeIn this study, a therapeutic drug monitoring (TDM) of erlotinib in pancreatic cancer patients was performed over 50 weeks to reveal possible alterations in erlotinib plasma concentrations. Additionally, a physiologically based pharmacokinetic (PBPK) model was created to assess such variations in silico.MethodsPatients with advanced pancreatic cancer received a chemotherapeutic combination of 100 mg erlotinib q.d., 500–900 mg capecitabine b.d. and 5 mg/kg bevacizumab q.2wks. Samples were analyzed by HPLC and the results were compared to a PBPK model, built with the software GastroPlus™ and based on calculated and literature data.ResultsThe erlotinib plasma concentrations did not show any accumulation, but displayed a high inter-patient variability over the whole investigated period. Trough plasma concentrations ranged from 0.04 to 1.22 µg/ml after day 1 and from 0.01 to 2.4 µg/ml in the long-term assessment. 7% of the patients showed concentrations below the necessary activity threshold of 0.5 µg/ml during the first week. The impact of some co-variates on the pharmacokinetic parameters Cmax and AUC0–24 were shown in a PBPK model, including food effects, changes in body weight, protein binding or liver function and the concomitant intake of gastric acid reducing agents (ARAs).ConclusionThis study presents the approach of combining TDM and PBPK modeling for erlotinib, a drug with a high interaction potential. TDM is an important method to monitor drugs with increased inter-patient variability, additionally, the PBPK model contributed valuable insights to the interaction mechanisms involved, resulting in an effective combination from a PK perspective to ensure a safe treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.