Abstract

Antigen, antibodies, and other therapeutic biomolecule solutions are likely to undergo physical and chemical processes during their development, manufacturing, transport, and storage. This can induce internal stresses in the sample, resulting in aggregation, heterogeneities, and an overall reduction in the sample quality, e.g., freeze–thawing of samples for storage. Monitoring mixing is thus crucial to ensure homogeneity and consistency while further optimizing downstream processes. We present a simple and portable all-lens Schlieren setup to detect, visualize, and quantify heterogeneities in the protein/antigen or other pharmaceutical solutions during and after thawing in real-time. We illustrate the capabilities of the proposed method by visualizing and quantifying heterogeneities during the thawing of BSA and IgG in four different formulation buffers. The local concentration gradients in a thawing sample lead to light intensity variations which are captured using the Schlieren technique. The sample heterogeneity can then be quantified by relating these light intensity variations to concentration gradients. To this end, we first measure the refractive index of the sample solutions, which varies linearly with the sample concentration. This linear relation is then used to extract the concentration gradient field from the light intensity data. We establish the validity of the proposed approach by demonstrating its accuracy in measuring the diffusion coefficient of a diffusing interface. The portability of the setup and its applicability to a wide range of pharmaceutical solutions make this Schlieren-based technique suitable for monitoring the mixing, heterogeneity, and stability of pharmaceutical samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.