Abstract
ABSTRACTGround‐water monitoring to delineate a contaminant plume in fluvial hydrostratigraphic units often is uncertain. Fluvial deposits consist typically of interbedded layers of sands, silts and clays, with buried stream channel deposits of sands or gravels. The channel deposits are often interpreted erroneously to be discontinuous between test holes and in cross section due to their sinuosity. Erroneous conclusions pertaining to the areal continuity of these geometrically complex deposits are inevitable unless the investigator thoroughly understands the depositional environment(s).The hydraulic conductivity of buried stream channel deposits may be several orders of magnitude higher than the matrix materials in which they are enclosed. The higher hydraulic conductivity of buried stream channel deposits has potentially significant ramifications with respect to ground‐water monitoring to delineate the geometry of a contaminant plume migrating through these deposits.Ground‐water monitoring at uranium mill waste disposal sites located in fluvial environments began on a significant scale in about 1977. A uranium mill tailing disposal site located in such an environment in central Wyoming is among the first sites monitored. Thirty‐seven monitor wells were constructed at the site to delineate a seepage plume originating from one of the tailing ponds. This case history illustrates the need for a detailed under—standing of the hydrostratigraphy at a waste disposal site in order to interpret the meaning of ground‐water quality data effectively. Water quality data from monitor wells located on a hit or miss basis often are misleading. The hydrostratigraphic horizon from which a water quality sample is collected must be well defined before the sample analyses can be interpreted quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.