Abstract

In this article, we extend the framework of monetary risk measures for stochastic processes to account for heavy tailed distributions of random cash flows evolving over a fixed trading horizon. To this end, we transfer the L^p-duality underlying the representation of monetary risk measures to a more flexible Orlicz duality, in spaces of stochastic processes modelling random future evolution of financial values in continuous time over a finite horizon. This contributes, on the one hand, to the theory of real-valued monetary risk measures for processes and, on the other hand, supports a new representation of acceptability indices of financial performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.