Abstract

We show that many currently popular monetary policy rules fall structurally within a class of robust industrial control known as proportional-integral-differential, or PID, control. From this identification we propose a general class of PID-based monetary policy rules that include as limiting cases the original Taylor rule as well as lagged and forward-looking extensions of thereof. The effectiveness of parsimonious extensions of the Taylor rule are consistent with the well-known effectiveness and parsimony of PID control. We find that for the same reason encountered in other PID control applications—noisy data—most monetary policy rules fall in the proportional-integral subset of PID control known as PI control. We estimate both PID and PI monetary policy rules using the historical analysis approach of Taylor and compare the performance of our PI rule to other policy rules using a recently-developed macroeconomic-model comparison methodology. A key feature of PID control is its remarkable effectiveness for systems where the equations of motion are not known. Thus, PID-based rules both link monetary policy with a tradition of practical control in the absence of known dynamical equations and provide baseline rules for monetary policy in the face of macroeconomic model uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.