Abstract

To assess the response of monazite during subduction of continental crust to mantle depths, U–Pb isotopic ratios and elemental abundances were measured simultaneously by laser-ablation split-stream inductively-coupled plasma mass spectrometry (LASS) in rocks from the ultrahigh-pressure Western Gneiss Region of the Scandinavian Caledonides. Nearly seventy different samples of quartzofeldspathic basement and overlying metasedimentary rocks were studied. Pre-subduction monazite (chiefly 1.6Ga and 1.0Ga) is preserved locally in the structurally lowest, basement rocks because earlier, Precambrian tectonism produced coarse-grained, high-grade rocks that were resistant to further recrystallization in spite of syn-subduction temperatures and pressures of 650–800°C and 2–3.5GPa. A few of the monazite in the metasedimentary rocks atop the basement preserve syn-subduction U–Pb dates, but the majority continued to recrystallize during post-subduction exhumation and record a general westward decrease in age related to westward-progressing exhumation. The absence of Precambrian monazite in the metasedimentary rock atop the basement suggests that sedimentation postdated the 1.0–0.9Ga high-grade metamorphism and was late Proterozoic to early Paleozoic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.