Abstract

Received 31 March 2009; revised manuscript received 1 October 2009; published 29 October 2009 Using general symmetry arguments and model calculations we analyze the superconducting gap in materials with multiple Fermi-surface pockets, with applications to iron pnictides. We show that the gap in the pnictides has an extended s-wave symmetry but is either nodeless or has nodes, depending on the interplay between intraband and interband interactions. We argue that the nodes in the gap emerge without a phase transition as the tendency toward a spin-density-wave order gets weaker. These findings provide a way to reconcile seemingly conflicting results of numerical and experimental studies of the pnictides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.