Abstract
A fibre-finite-element model of continuous prestressed concrete (PC) composite box girder with corrugated steel webs is established with force-based elements using OpenSees. After the model is validated with existing experimental data, the effects of reinforcement index in upper and lower flanges, effective prestress and concrete strength on the moment redistribution behaviour is analysed. It is shown that increasing the reinforcement index in lower flange or effective prestress can increase the amount of bending moment redistribution, whereas increasing the concrete strength or reinforcement index in upper flange can decrease the amount of bending moment redistribution. By inspecting the sensitivity of parameters, it is found that the reinforcement index in lower flange has the most significant influence on the moment redistribution, followed by the concrete strength and then by the effective prestress, while the reinforcement index in upper flange has only little impact on the moment redistribution. The calculation results are compared with the existing formulas. Finally, a moment redistribution formula is proposed for continuous PC box girder with corrugated steel webs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.