Abstract

Secondary structures in long circulating tumor nucleic acids have potential obstacles for specific location point hybridized detection of gene fragments. The exploration of biosensing strategies requires selectively changing the nucleic acids conformation and inducing signal switching. Herein, a self-assembled magnetic composite probe (MCP) was fabricated by the hybridization reaction of Linker DNA and a "Y"-junction-DNA nanostructure on the surface of magnetic beads, contributing to the capture, secondary structure unlocking, and enrichment of the PML/RARα DNA "L" subtype. Then, by integrating the MCP-actuated reactor, a one-step "off-on" signal switching MoS2@FAM-probe biosensing method was developed for the efficient detection of the PML/RARα DNA "L" subtype. The proposed biosensor was capable of detecting 100 bases PML/RARα DNA "L" subtype with a wide linear range of 1 pM to 200 nM and a limit of detection down to 0.223 pM without signal amplification. In addition, the biosensing method was successfully applied for the detection of target in serum samples. It is worth pointing out that this simple biosensing strategy could enable long nucleic acids fragments with secondary structures from ctDNA and ctRNA to be quantitatively assayed based on direct hybridization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.