Abstract

Carbon nitride has attracted extensive attention because of its promising properties and great application potential in photocatalysis, electrocatalysis, bioimaging and biomedicine. In this work, carbon nitride with a novel morphology, i.e., tetragonal carbon nitride hollow tube (TCNT), was in-situ synthesized by a molten salt method at 450°C using melamine as the starting precursor. As-prepared TCNTs were 2–20μm long and 50–2000nm wide and possessed higher content of impurity nitrogen and larger specific surface area than conventional bulk g-C3N4 (B-CN). A possible salt-assisted self-assembly mechanism is believed to have dominated the formation of TCNTs. As-prepared TCNTs exhibited superior photocatalytic activities and adsorption performance for methylene blue and phenol degradation to B-CN, suggesting that they could be potentially used as a promising photocatalyst and adsorbent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.