Abstract

In this work, the further development of the molten metal capillary reactor in slug-flow regime is presented. The preliminary results from the high-temperature pyrolysis of methane at 1300 °C and 9 Nml/min are presented with a calculated conversion of 80%, and, a mean residence time of 1.36 s. Due to carbon deposition, difficult gas separation and unstable slug-flow, it was deemed necessary to redesign the system. For that, several alloys were tested looking for improved wettability and more favorable hydrodynamics. The modified experimental set-up is described, which led to improvements in gas separation, but not enough stability in the slug-flow. Finally, the current experimental set-up is introduced. There, a characterization of the hydrodynamics is performed using a low temperature alloy of gallium, indium and tin, GaInSn, and, a stable regular slug-flow is established for various gas and liquid flows. The presence of a film in the slug-flow remains subject to question and the conclusions on the direction of the project are drawn towards an alternative reactor system or further hydrodynamic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.