Abstract

We present the first implementation of the evaluation Raman spectra of large molecules using the molecules-in-molecules (MIM) fragment-based method (MIM-Raman). Molecular fragments and associated overlapping subsystems are constructed by cutting the C–C bonds in the large molecule based on the connectivity information and a number-based fragmentation scheme. After saturating the dangling bonds with hydrogen link-atoms, independent energy and Raman frequency calculations are performed on each subsystem. Subsequently, link-atom-related forces, Hessian and polarisability derivative matrix elements are projected back onto the corresponding host and supporting atoms through the Jacobian projection method. In the two-layer model (MIM2), the long-range interactions, absent in the single layer model (MIM1), are taken into account through a second layer at a lower level of theory. The MIM-Raman method is benchmarked on a set of large linear and cage molecules. The MIM extrapolated energy and Raman spectra are compared with the full calculations at B3LYP/6-311G(d,p) or B3LYP/6-311+G(d,p) levels of theory. The benchmark analysis of 21 molecules at MIM2 show an accuracy improvement of 85% in energies, 74% in Raman frequencies and 66% in intensities over MIM1. The implementation and benchmark analysis validates the MIM-Raman model for exploring Raman spectra of large molecules in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.