Abstract
A novel detection technique on biochip for the quantification of label-free C-reactive protein (CRP) based on molecular switching of fluorescence (MSF) is demonstrated by total internal reflection fluorescence microscopy. It alters fluorescence intensity of fluoreseinamine isomer 1 (FAI) upon binding with its specific ligand, O-phosphorylethanolamine (PEA). In the MSF-based detection, FAI was used as an ink, printed on a 3-glycidoxypropyl-trimethoxysilane (GPTS)-coated glass coverslip. With the addition of GPTS conjugated PEA solution to the FAI-printed coverslip, the fluorescence intensity was remarkably decreased. Addition of CRP increased fluorescence intensity linearly in the range of 800 aM to 500 fM ( R = 0.997). The MSF-based biochip assay for the estimation of CRP in human sera showed ∼200 times increased detection sensitivity in less than a third of the time to obtain results using a conventional enzyme-linked immunosorbent assay. This biochip detection is a promising new technique for the quantification of CRP molecules from trace amounts of clinical samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.