Abstract

We investigate the concept of molecular-sized outward-swinging gate, which allows for entropy decrease in an isolated system. The theoretical analysis, the Monte Carlo simulation, and the direct solution of governing equations all suggest that under the condition of local nonchaoticity, the probability of particle crossing is asymmetric. It is demonstrated by an experiment on a nanoporous membrane one-sidedly surface-grafted with bendable organic chains. Remarkably, through the membrane, gas spontaneously and repeatedly flows from the low-pressure side to the high-pressure side. While this phenomenon seems counterintuitive, it is compatible with the principle of maximum entropy. The locally nonchaotic gate interrupts the probability distribution of the local microstates, and imposes additional constraints on the global microstates, so that entropy reaches a nonequilibrium maximum. Such a mechanism is fundamentally different from Maxwell's demon and Feynman's ratchet, and is consistent with microscopic reversibility. It implies that useful work may be produced in a cycle from a single thermal reservoir. A generalized form of the second law of thermodynamics is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.