Abstract

We describe here simulations of aqueous salt solutions that are performed using an explicit charge transfer force field. The emphasis of the discussion is on the calculation of a dynamical property of the solutions: self-diffusion of water. While force fields that are based on pairwise additive potentials or on potentials with explicit inclusion of polarization or with scaled charges can provide at best a qualitative agreement with experiments, force fields with explicit inclusion of charge transfer can produce quantitative agreement with experiment for NaCl and KCl solutions. We argue that a force field with explicit charge transfer contains new physics absent in the previously used force fields described in recent reviews of molecular simulations of aqueous electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.