Abstract

We report a series of Grand Canonical Monte Carlo simulations of water adsorption in NaY and NaX faujasite, as well as in silicalite-1. Computed adsorption isotherms and heats of adsorption were in good agreement with the available experiments. The existence of cyclic water hexamers in NaX located in the 12-ring windows, recently disclosed by neutron diffraction experiments (Hunger et al., J. Phys. Chem. B, 2006, 110, 342-353) was reproduced in our simulations. Interestingly enough, such cyclic hexamer clusters were also observed in the case of NaY, in which no stabilizing cation is present in the 12-ring window. We also report cation redistribution upon water adsorption for sodium faujasite with varying cation contents (Si ratio Al ratio in the range 1.53-3). A simple and transferable forcefield was used, that enabled to reproduce the different aspects of water physisorption in stable zeolites. The high pressure water condensation in hydrophobic silicalite-1 was reproduced without any parameter readjustment. The method and forcefield used here should be useful for engineering oriented applications such as the prediction of multi-component mixture adsorptive separations in various stable zeolites. It allows to address the issue of the effect of the small amounts of water that are almost inevitably present in zeolite-based separation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.