Abstract

The subject of this paper is the investigation of finite-size effects and the determination of critical parameters for a class of truncated Lennard-Jones potentials. Despite significant recent progress in our ability to model phase equilibria in multicomponent mixtures from direct molecular simulations, the accurate determination of critical parameters remains a difficult problem. Gibbs ensemble Monte Carlo simulations with systems of controlled linear system size are used to obtain the phase behavior in the near-critical region for two- and three dimensional Lennard-Jones fluids with reduced cutoff radii of 3, 3.5, and 5. For the two-dimensional systems, crossover of the effective exponent for the width of the coexistence curve from mean field (β = 1/2 in the immediate vicinity of the critical point to Ising-like (β= 1/8) farther away is observed. Critical parameters determined by fitting the data that follow Ising-like behavior are in good agreement with literature values obtained with finite-size scaling methods. For the three-dimensional systems, no crossover to mean field-type behavior was apparent. Extrapolated results for the critical parameters are consistent with literature estimates for similar fluids. For both two- and three-dimensional fluids, system size effects on the coexistence curves away from the critical point are small, normally within simulation statistical uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.