Abstract

Recent experiments report that an early nucleating crystalline structure (or polymorph) may nucleate another polymorph. We use molecular dynamics simulations to model this phenomenon known as cross-nucleation. We study the onset of crystallization in a liquid of Lennard-Jones particles cooled at a temperature 22% below the melting temperature. We show that growth proceeds through the successive cross-nucleation of the metastable hexagonal close-packed (hcp) polymorph on the stable face-centered cubic (fcc) polymorph and of the stable fcc polymorph on the metastable hcp polymorph. This finding is in agreement with the experimental results which demonstrated that the cross-nucleation of a stable polymorph on a metastable polymorph is just as likely as the cross-nucleation of a metastable polymorph on a stable polymorph. We then extend our findings established in the case of the homogeneous crystal nucleation to a situation of practical interest, i.e., when a seed of the stable polymorph is used. By studying the crystal growth from the (111) plane of a perfect fcc crystal, we show that, again, growth proceeds through the cross-nucleation of the hcp and fcc structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.