Abstract
In this work, we use molecular simulations to determine the structural and physical properties of the organic matter present in type II shales in the middle of the oil generation window. The construction of molecular models of organic matter constrained by experimental data is discussed. Using a realistic molecular model of organic matter, we generate, by molecular dynamics simulations, structures that mimic bulk organic matter under typical reservoir conditions. Consistent results on density, diffusion, and specific adsorption are found between simulated and experimental data. These structures enable us to provide information on the fluid distribution within the organic matter, the pore size distributions, the isothermal compressibility, and the dynamic of the fluids within the kerogen matrix. This study shows that a consistent description at the molecular level combined with molecular simulations can be useful, in complement of experiments, to investigate the organic matter present in shales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.