Abstract

IntroductionEstablishment of hemochorial placenta is associated with development and remodelling of uterine vasculature at the maternal fetal interface. This results in calibration of high resistance uterine arteries to flaccid low resistance vessels resulting in increased blood flow to the placenta and fetus in humans and rodents. Mechanisms underlying these remodelling events are poorly understood. In this report, we examine regulation of vascular remodelling using vascular smooth muscle cell (VSMC) phenotype switching as a primary parameter. MethodsCellular dynamics was assessed by Immunofluorescence, qRT-PCR, western blotting in timed pregnant rat tissue. In vitro co-culture of trophoblast cells with vascular smooth muscle cells was used to understand regulation mechanism. ResultsAnalysis of cellular dynamics on days 13.5, 16.5 and 19.5 of gestation in the rat metrial gland, the entry point of uterine arteries, revealed that invasion of trophoblast cells preceded disappearance of VSMC α-SMA, a contractile state marker. Co-culture of VSMCs with trophoblast cells in vitro recapitulated trophoblast-induced de-differentiation of VSMCs in vivo. Interestingly, co-culturing with trophoblast cells activated PDGFRβ signalling in VSMCs, an effect mediated by secreted PDGF-BB from trophoblast cells. Trophoblast cells failed to elicit its effect on VSMC de-differentiation upon inhibition of PDGFRβ signalling using a selective inhibitor. Moreover, co-culturing with trophoblast cells also led to substantial increase in Akt activation and a modest increase in Erk phosphorylation in VSMCs and this effect was abolished by PDGFRβ inhibition. DiscussionOur results highlight that trophoblast cells direct VSMC phenotype switching and trophoblast derived PDGF-BB is one of the modulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.