Abstract

We have previously reported that the trimeric Zn(2+)-cyclen complex (tris(Zn(2+)-cyclen), [Zn(3)L(1)](6+)) and the trianion of trithiocyanuric acid (TCA(3-)) assembled in a 4:4 ratio to form a cuboctahedral supramolecular cage, [(Zn(3)L(1))(4)(TCA(3-))(4)](12+) (hereafter referred to as a Zn-cage), in neutral aqueous solution (cyclen=1,4,7,10-tetraazacyclododecane). Herein, we examined the molecular recognition of C(1)-C(12) hydrocarbons (C(n)H((2n+2)) (n≈1-12)), cyclopentane, cyclododecane, cis-decalin, and trans-decalin by the Zn-cage under normal atmospheric pressure. This cage complex was also able to encapsulate guest molecules that had larger volumes than that of the inner cavity of the Zn-cage, thereby suggesting that the inner shape of the Zn-cage was flexible. Computational simulations of Zn-cage-guest complexes provided support for this conclusion. Moreover, the solvent-accessible surface areas (SASA) of the Zn-cage host, guest molecules, and the Zn-cage-guest complexes were calculated and the data were used to explain the order of stability determined by the guest-replacement experiments. The storage of volatile molecules in aqueous solution by the Zn-cage is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.