Abstract
High-level electronic structure calculations of the ground and low-lying energy electronic states for ThHx and ThHx- for x = 2-5 are reported and compared to available anion photoelectron detachment experiments. The adiabatic electron affinities (EAs) are predicted to be 0.82, 0.88, 0.51, and 2.36 eV for x = 2 to 5, respectively, at the Feller-Peterson-Dixon (FPD) level. The vertical detachment energies (VDEs) are predicted to be 0.84, 0.88, 0.81, and 4.38 eV for x = 2-5, respectively. The corresponding experimental VDEs are 0.871 eV for x = 2, 0.88 eV for x = 3, and 4.09 eV for x = 5. As for ThH, there is a significant spin-orbit (SO) correction for the EA of ThH2, and this correction decreases substantially for x > 2. The observed ThH2- photoelectron spectrum has many transitions as predicted at the CASPT2-SO level. The FPD bond dissociation energies (BDEs) increase from 67 to 75 kcal/mol for x = 2 to x = 4 at the FPD level. The BDE for ThH5 is much lower as it is a complex of H2 with ThH3. The hydride affinities for x = 2 to 4 are all comparable and near 70 kcal/mol. A natural bond orbital analysis is consistent with a significant Th+-H- ionic contribution to the Th-H bonds. There is very little participation of the 5f orbitals in the bonding and the valence electrons on the Th are dominated by 7s and 6d for the neutrals and anions except for ThH2- where there is a significant contribution from the 7p.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.