Abstract

Water and methane can stay together under low temperature and high pressure in the forms of liquid solutions and crystalline solids. From liquid and gaseous states to crystalline solids or the contrary processes, amorphous methane hydrates can occur in these evolution scenarios. Herein, mechanical properties of amorphous methane hydrates are explored for the first time to bridge the gap between mechanical responses of monocrystalline and polycrystalline methane hydrates. Our results demonstrate that mechanical properties of amorphous methane hydrates are strongly governed by our original proposed order parameter, namely, normalized hydrogen-bond directional order parameter. Followed by this important achievement, a multistep deformation mechanism core is proposed to explain mechanical properties of amorphous methane hydrates. Through an extensive detailed analysis of amorphous methane hydrates, our simulation results not only greatly enlarge our fundamental understanding for mechanical responses of amorphous methane hydrates in geological systems but also offer a fresh perspective in structure-property topics of solid materials in future science and technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.