Abstract

The major mammalian plasma membrane lipids are phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and cholesterol. Whereas PC-cholesterol interactions are well studied, far less is known about those between PE and cholesterol. Here, we investigated the molecular organization of cholesterol in PEs that vary in their degree of acyl chain unsaturation. For heteroacid sn-1 saturated (palmitoyl), sn-2 unsaturated (various acyl chain) PEs, cholesterol solubility determined by X-ray diffraction was essentially identical with 1 (oleoyl, 51 +/- 3 mol %) and 2 (linoleoyl, 49 +/- 2 mol %) double bonds before decreasing progressively with 4 (arachidonyl, 41 +/- 3 mol %) and 6 (docosahexaenoyl, 31 +/- 3 mol %) double bonds. With 6 double bonds in each chain, cholesterol solubility was further reduced to 8.5 +/- 1 mol %. However, (2)H NMR experiments established that the orientation of cholesterol in the same heteroacid PE membranes was unaffected by the degree of acyl chain unsaturation. A tilt angle of 15 +/- 1 degrees was measured when equimolar [3alpha-(2)H(1)]cholesterol was added, regardless of the number of double bonds in the sn-2 chain. The finding that solubility of cholesterol in sn-1 saturated PEs depends on the amount of polyunsaturation in the sn-2 chain of PE differs from the equivalent PCs that universally incorporate approximately 50 mol % sterol. Unlike PCs, a differential in affinity for cholesterol and tendency to drive lateral segregation is inferred between polyunsaturated PEs. This distinction may have biological implications reflected by the health benefits of dietary polyunsaturated fatty acids that are often taken up into PE > PC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.