Abstract
Deuterium (2H) nuclear magnetic resonance (NMR) quadrupole splittings and relaxation times have been measured for a variety of specifically deuterated lipids intercalated in lamellar-multibilayer dispersions and single-bilayer vesicles of egg lecithin and lecithin-cholesterol mixtures. The deduced order parameters and relaxation times vary with position of deuteration, acyl chain length, unsaturation, and temperature. The order parameters and spinlattice relaxation times T1 indicate rapid intramolecular motions of restricted amplitude in both the choline head group and hydrocarbon chains. The ordering profile for the acyl chains is similar to that predicted by statistical-mechanical theory. The order parameters yield estimates of the bilayer thickness and linear coefficient of expansion in close agreement with the x-ray determinations. A comparison of the deuterium and electron spin resonance spinprobe order parameters demonstrates the perturbation of the bilayer by the bulky nitroxide probe. The transverse relaxation time T2 for single-bilayer vesicles is quantitatively accounted for by a simple modification of classical relaxation theory which takes into account the modulation of the static quadrupole interaction by rapid local molecular motions and the modulation of the residual quadrupole interaction by the slower overall tumbling of the vesicle. It is unambiguously demonstrated that molecular motion and order in single-bilayer vesicles are very similar to those in lamellar multibilayers. Significant differences occur only for a few segments near the terminal methyl groups of the acyl chains, where the order parameters for vesicles are 10-30% smaller than those found for lamellae. The incorporation of cholesterol in lecithin bilayers is shown to increase the degree of orientational order in vesicles and lamellae, and to increase the hydrodynamic radius of vesicles. Thus, single-bilayer vesicles and multilamellar dispersions of phospholipids are equally useful models for biological membranes. They yield equivalent information about the internal organization and mobility of lipid bilayers, when the spectral manifestations of overall vesicle motion are correctly taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.